Google+ SpaceTravelFoundation: NASA launched a rocket into Northern Lights

February 5, 2015

NASA launched a rocket into Northern Lights

Dear readers and followers,


The interaction of the solar wind (issue from the Sun ) and Earth’s atmosphere produces auroras. These northern and southern lights dance across the night sky and have mesmerized and inspired observers for centuries. For scientists, this dance of light also leads to many questions about how space weather affects Earth’s atmosphere. In late January 2015, scientists, in collaboration with NASA, launched a rocket with probes into the northern lights in order to learn more about how they heat the planet’s atmosphere.  

Credit image: +NASA 

The Auroral Spatial Structures Probe (ASSP) was launched at 5:41 a.m. on January 28th 2015, from the Poker Flat Research Range about 50 kilometers north of Fairbanks, Alaska. 

The ASSP carried seven instruments to study the electromagnetic energy that can heat the thermosphere, the second highest layer of the atmosphere, during auroral events. The interaction of waves and particles from the solar wind, Earth’s magnetosphere, and the upper atmosphere can cause “Joule heating.” Essentially, the electrical currents on the edge of space run into a resistant media (the air in the atmosphere) and generate heat in a process similar to that of a toaster coil or electric stove. This heating can expand the atmosphere upward and increase the friction, or drag, on spacecraft and satellites.

The AASP launch occurred just two days after the successful launches of the Mesosphere-Lower Thermosphere Turbulence Experiment (M-TeX) and the Mesospheric Inversion-layer Stratified Turbulence (MIST) experiment. Two pairs of instrumented rockets were launched about 30 minutes apart to study how turbulence is formed in the presence of inversion layers in the upper atmosphere. This turbulence causes particles to diffuse between atmospheric layers. The MIST launches included the release of harmless trimethyl aluminum vapor to help researchers trace diffusion at high altitude

“Recent solar storms have resulted in major changes to the composition of the upper atmosphere above 80 kilometers, where enhancements in nitrogen compounds have been found,” said Richard Collins, upper atmospheric researcher from the University of Alaska. “These compounds can be transported into the middle atmosphere where they can contribute to ozone destruction. However, the meteorological conditions do not always allow such transport to occur. Thus, the impact of solar activity on the Earth is not just about how the Sun is a source of energetic particles, but also how the Earth’s meteorological conditions determine the fate of these particles in the atmosphere.”



Remember that this blog is free, but you can support us with Flattr


Stay tuned